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Abstract 

In the past decade, brain tumours have been one of the major problems to cure completely in the 

medical field, and it has become evident that the treatment of cancer and the control of tumour growth 

require a greater understanding of the interactions among the key components involved in the cancer 

network. In this article, we propose a new system of differential equations that explains the interaction 

of glial (healthy) cells, glioma (cancer) cells, macrophages, CD8+ T cells, and immunotherapy. 

Positivity and boundedness are investigated. Stability analysis is discussed in two categories: without 

any treatment and with immunotherapy treatment. Moreover, numerical simulations are also given for 

our proposed model. The discussion and conclusion are discussed. In the final analysis, we discuss 

potential future paths and existing research endeavours that are targeted at improving the methods of 

immunotherapy for the purpose of achieving better results in the treatment of brain cancer. Overall, 

immunotherapy is a therapeutic method that has a great deal of potential as an independent treatment 

for brain cancer. It also marks a paradigm shift in the treatment landscape for this debilitating illness. 
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1. Introduction 

 The National Brain Tumour Society estimates that 7,00,000 Americans are currently coping with 

primary brain tumours, and that 78,980 additional cases will be reported in 2018 [1]. It is not 

unexpected that scientists and academics from all around the world have been working to simulate the 

brain tumour. The goal is to better understand the intricate biological process in order to develop new 

treatment plans or enhance those that are already in place in order to cure brain tumours or at the very 

least enhance patient quality of life. Numerous types of mathematical models have previously been 

created, and each one helps us comprehend the tumour and the dynamics that affect the patient’s 

prognosis in a unique way. Malignant gliomas’ immune-suppressed state can be reversed by 

administering mem brane glycoprotein T11 target structure as a therapeutic agent by improving the 

functional state of immune cells such macrophages and activated CD8+ T cells in animals. According 

to computer modelling of this therapy, treatment with T11 target structure may enable immune system 

cells to pass through the blood-brain barrier (BBB) impermeability, resulting in increased phagocytic 

activity and a decrease in malignant gliomas [2]. Iarosz et al. [3] built a mathematical model of a brain 

tumour with biological underpinnings in which they used the heavy step function to simulate the 

interaction between glial cells and neurons. In their simulation, they employed chemotherapy to stop 

the growth of aggressive glioma cells. Using a cellular automaton model, Tektonidis et al. [4] examined 

a computational data-driven investigation of the growth and invasive of malignant glioma cells in vitro. 

They concentrated on identifying the biological components that determine the malignant gliomas’ in 

vitro cultured aggressiveness. In glioblastoma patients, a cellular immunodeficiency condition has 

been noted. Skin specific energy to a number of antigens and a decline in T cell blastogenic reactivity 

in vitro are symptoms of defective cell-mediated immunity [5, 6, 7]. Additionally, it is well known that 

the majority of glioblastoma patients experience humoral immune reactions to their tumours [8, 9]. 
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However, there is less concrete and disputed evidence of strong T cell-mediated anti-tumour responses 

[10, 11, 12]. Glioblastoma tissue obtained after surgery from tumour-infiltrating lymphocytes has no 

sensitivity to T cell mitogens in vitro [13]. According to Kikuchi and Neuwelt [14] (1983), the tumour 

cyst fluid of glioblastoma patients contains immunosuppressive substances that prevent the growth of 

normal lymphocytes caused by mitogens and antigens, as well as the blood of the patient before but 

not after tumour excision [5].  

We investigated whether glioma cells secrete T cell suppressor factors in light of the link between 

glioblastoma and aberrant T cell function that has been shown in recent years. Some authors [15, 16, 

17] have also investigated brain tumours in the context of other therapies. In [3] K. C. Iarosz et al. 

presented that healthy cells respond among most tumours and Chemotherapy. S. Khajanchi et al. [18] 

address the proliferation of cancer, macrophages, and CD8+ T cells while not affecting the growth of 

healthy cells. Building on these foundational studies, another investigation [19] examined both 

analytical and numerical solutions for modelling the interactions among glial cells, immunotherapy, 

and cancerous cells. Drawing inspiration from these findings, the present study seeks to develop an 

innovative computational framework that integrates stability analysis to model brain tumour responses 

to immunotherapy. This framework aims to advance mathematical modelling by incorporating stability 

analysis methodologies into the immunotherapy treatment model for brain tumours, as described in 

[19].  

We construct the work as follows: In Section two, A (NLODE) is constructed using (IT). In Section 

three, positivity and boundedness are discussed. In Section 4, stability analysis is investigated. In 

Section 5, numerical solutions are discussed, and in Section 6, the discussion and conclusion are 

provided. 

 

2. Mathematical Modelling 

In this dynamic model of brain tumours (gliomas), healthy (glial) cells interact with Immunotherapy 

(IT) treatment. Our model describes the growth, death, and interaction between these cells as given 

by: 

𝑑𝑋1(𝑡)

𝑑𝑡
= 𝛹1𝑋1(𝑡) (1 −

𝑋1(𝑡)

𝑀1
) − 𝛥1𝑋1(𝑡)𝑋2(𝑡),                                                                               (1)

𝑑𝑋2(𝑡)

𝑑𝑡
= 𝛹2𝑋2(𝑡) (1 −

𝑋2(𝑡)

𝑀2
) − 𝛥2𝑋1(𝑡)𝑋2(𝑡) −

(𝛾
1
𝑋3(𝑡) + 𝛾2𝑋4(𝑡))𝑋2(𝑡)

𝑋2(𝑡) + 𝑀1

,                      (2)

𝑑𝑋3(𝑡)

𝑑𝑡
= 𝑟𝑋3(𝑡) (1 −

𝑋3(𝑡)

𝑉1
) −

𝛾
3
𝑋2(𝑡)𝑋3(𝑡)

𝑀2 + 𝑋2(𝑡)
,                                                                                  (3)

𝑑𝑋4(𝑡)

𝑑𝑡
=
𝜈1𝑋2(𝑡)𝑋4(𝑡)

𝑀3 + 𝑋2(𝑡)
− 𝜇1𝑋4(𝑡) −

𝛾
4
𝑋2(𝑡)𝑋4(𝑡)

𝑀4 + 𝑋2(𝑡)
+ 𝑠1𝑢1.                                                            (4)

 

The system comprises four different components, namely density of Glial cells (X1(Kg/m3)), the 

density of cancer cells (X2(Kg/m3)), the density of Macrophages (X3(Kg/m3)), the concentrations of 

CD8+ T cells (X4(Kg/m3)). 

In equations (1), (2), and (3), 1st term represents the proliferation of glial cells, glioma cells, 

macrophages. In equations (1) and (2), 2nd term represents interaction between healthy and cancer 

cells. In equation (2) final term indicates elimination of X2 owing to interplay with X3 and X4. In 

equation (3), last term represents deactivation of X3 owing to interaction with X2. In equation (4), 1st 

term indicates the X4 are recruited by X2, 2nd term indicates death rate of X4, third term indicates the 

X4 eliminated by X2, and last term s1 is the treatment strength, u1 is a source of X4. 

The system of (NLODE) from (1) - (4) are normalized, is given by 
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{
 
 
 
 
 

 
 
 
 
 
𝑑𝑥1(𝑡)

𝑑𝑡
= 𝛹1𝑥1(𝑡)(1 − 𝑥1(𝑡)) − 𝛿1𝑥1(𝑡)𝑥2(𝑡),

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝛹2𝑥2(𝑡)(1 − 𝑥2(𝑡)) − 𝛿2𝑥1(𝑡)𝑥2(𝑡) −

(𝛾1𝑥3(𝑡) + 𝛾2𝑥4(𝑡))𝑥2(𝑡)

𝑥2(𝑡) + 𝑚1
,

𝑑𝑥3(𝑡)

𝑑𝑡
= 𝑟𝑥3(𝑡)(1 − 𝑥3(𝑡)) −

𝛾
3
𝑥2(𝑡)𝑥3(𝑡)

𝑚2 + 𝑥2(𝑡)
,

𝑑𝑥4(𝑡)

𝑑𝑡
=
𝜈1𝑥2(𝑡)𝑥4(𝑡)

𝑚3 + 𝑥2(𝑡)
− 𝜇1𝑥4(𝑡) −

𝛾
4
𝑥2(𝑡)𝑥4(𝑡)

𝑚4 + 𝑥2(𝑡)
+ 𝑠1𝑢1.

               (5) 

Where, 

 

𝑥1(𝑡) =
𝑋1(𝑡)

𝑀1
, 𝑥2(𝑡) =

𝑋2(𝑡)

𝑀2
, 𝑥3(𝑡) =

𝑋3(𝑡)

𝑉1
, 𝑥4(𝑡) =

𝑋4(𝑡)

𝑀3
, 𝛿1 = 𝛥1𝑀2, 𝛿2 = 𝛥2𝑀1, 

𝛾1 =
𝛾1𝑉1

𝑀2
 , 𝛾2 =

𝛾2𝑀3

𝑀2
, 𝑚1 =

𝑀1

𝑀2
, 𝑚2 =

𝑀2

𝑀2
, 𝑚3 =

𝑀3

𝑀2
, and 𝑚4 =

𝑀4

𝑀2
.  

 

Table 1: List of symbols and abbreviations. 

Parameter Values Descriptions 

𝛹1 0.0068 𝑑𝑎𝑦−1 Proliferation rate [20, 21] 

𝛹2 0.012 𝑑𝑎𝑦−1 Proliferation rate [20, 21] 

𝛥1 3.6 × 10−5𝑑𝑎𝑦−1 Competition Coefficients [20] 

𝛥2 3.6 × 10−6𝑑𝑎𝑦−1 Competition Coefficients [20] 

 

Table 2: Values of Normalized Parameter. 

Parameter Values Source 

𝛾1 0.069943 [22] 

𝛾2 2.74492 [22] 

𝑚1 0.90305 [23] 

𝑟 0.3307 [22] 

𝛾3 0.0194 [22] 

𝑚2 0.030584 [23] 

𝜈1 0.1245 [24] 

𝑚3 2.8743 [24] 

𝜇1 0.0074 [22] 

𝛾4 0.01694 [22] 

𝑚4 0.378918 [23] 

𝛿1 1.8 × 10−2(𝑑𝑎𝑦−1) [3] 

𝛿2 1.8 × 10−3(𝑑𝑎𝑦−1) [3] 

 

3. Positivity and Bounded 

 The positivity and boundedness of the equations (5) with initial values are investigated 

 in these sections. 

 Theorem 3.1. The (NLODE) (5) solution remains positive. 

 Proof. The equations (5) give, 
𝑑𝑥1(𝑡)

𝑑𝑡
= 𝛹1𝑥1(𝑡)(1 − 𝑥1(𝑡)) − 𝛿1𝑥1(𝑡)𝑥2(𝑡),

𝑑𝑥1(𝑡)

𝑥1(𝑡)
= (𝛹1(𝑡)(1 − 𝑥1(𝑡)) − 𝛿1𝑥2(𝑡)) 𝑑𝑡,

 

we can get, 
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𝑥1(𝑡) = 𝑥1(0)𝑒𝑥𝑝 (∫ [𝛹1(1 − 𝑥1(𝑠)) − 𝛿1𝑥2(𝑠)]
𝑡

0

𝑑𝑠) . 

In similar way, we obtain from 2nd to 4th equations of (5), we get 

𝑥2(𝑡) = 𝑥2(0)𝑒𝑥𝑝 (∫ [𝛹2(1 − 𝑥2(𝑠)) − 𝛿2𝑥1(𝑠) −
(𝛾1𝑥3(𝑠) + 𝛾2𝑥4(𝑠))

𝑥2(𝑠) + 𝑚1
]

𝑡

0

𝑑𝑠) ,

𝑥3(𝑡) = 𝑥3(0)𝑒𝑥𝑝 (∫ [𝑟(1 − 𝑥3(𝑠)) −
𝛾3𝑥2(𝑠)

𝑥2(𝑠) + 𝑚2
]

𝑡

0

𝑑𝑠) ,

𝑥4(𝑡) = 𝑥4(0)𝑒𝑥𝑝 (∫ [
𝜈1𝑥2(𝑠)

𝑥2(𝑠) + 𝑚3
− 𝜇1 −

𝛾4𝑥2(𝑠)

𝑥2(𝑠) + 𝑚4
]

𝑡

0

𝑑𝑠) .

 

𝑅+
4 = {𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡): 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡) > 0}. 

Next, we are going to demonstrate that the system (5) is bounded by using the system’s positivity. 

Theorem 3.2. The (NLODE) (5) is bounded. 

 Proof. First, we take 1st equations of (5): 
𝑑𝑥1(𝑡)

𝑑𝑡
≤ 𝛹1𝑥1(𝑡)(1 − 𝑥1(𝑡)),

−
1

𝑥1
2

𝑑𝑥1
𝑑𝑡

−
𝛹1
𝑥1

≤ −𝛹1.
 

After solving we can get the solutions, 
𝑥1‾ = lim

𝑡→+∞
sup𝑥1(𝑡) ≤ 1. 

Similarly, we can take 2nd, 3rd of equations of (5), 
𝑑𝑥2(𝑡)

𝑑𝑡
≤ (1 − 𝑥2(𝑡))𝛹2𝑥2(𝑡),

𝑑𝑥3(𝑡)

𝑑𝑡
≤ 𝑟𝑥3(𝑡)(1 − 𝑥3(𝑡)).

 

The equations follow that, 
𝑥1‾ = lim

𝑡→+∞
sup𝑥1(𝑡) ≤ 1,  𝑥2‾ = lim

𝑡→+∞
sup𝑥2(𝑡) ≤ 1,

𝑥3‾ = lim
𝑡→+∞

sup𝑥3(𝑡) ≤ 1.
 

Since 0 < µ1, from the fourth equation of (4) is that 
𝑑𝑥4(𝑡)

𝑑𝑡
≤ 𝜈1𝑥2(𝑡)𝑥4(𝑡) − 𝜇1𝑥4(𝑡). 

𝑥4‾ = lim
𝑡→+∞

sup𝑥4(𝑡) ≤ 0,     𝑖𝑓  𝜈1𝑥4(𝑡) < 𝜇1. 

𝑅+
4 = {𝑥1(𝑡),  𝑥2(𝑡),  𝑥3(𝑡),  𝑥4(𝑡):

 0 ≤ 𝑥1(𝑡) ≤ 1,   0 ≤ 𝑥2(𝑡) ≤ 1,   0 ≤ 𝑥3(𝑡) ≤ 1,   0 ≤ 𝑥4(𝑡)}.
 

 

4. Stability Analysis 

 Our focus is on their stability of the system of the equation. 

4.1 Equilibria and their local stability analysis 

The eigenvalues 𝜆𝑖(i = 1, 2, 3, 4) of the variational matrix decide the local stability of the system (8) 

around each of the singular points: 

𝐽𝐸𝑛 = [

𝑀11 𝑀12 0 0
𝑀13 𝑀14 𝑀15 𝑀16
0 𝑀17 𝑀18 0
0 𝑀19 0 𝑀20

],                      (6) 

where, 
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𝑀11 = 𝛹1 − 2𝛹1𝑥1 − 𝛿1𝑥2, 𝑀12 = −𝛾1𝑥1,𝑀13 = −𝛿2𝑥2,

𝑀14 = 𝛹2 − 2𝛹2𝑥2 − 𝛿2𝑥1 −
𝑚1(𝛾1𝑥3 + 𝛾2𝑥4)

(𝑚1 + 𝑥2)2
,

𝑀15 = −(
𝛾1𝑥2

𝑥2 +𝑚1
) ,𝑀16 = −(

𝛾1𝑥2
𝑥2 +𝑚1

) ,𝑀17 = −
𝛾
3
𝑚2𝑥3

(𝑥2 +𝑚2)2
,

𝑀18 = 𝑟 − 2𝑟𝑥3 −
𝛾
3
𝑥2

(𝑥2 +𝑚2)
, 𝑀19 =

𝜈1𝑚3𝑥4
(𝑚3 + 𝑥2)2

−
𝛾
4
𝑚4𝑥2

(𝑥4 +𝑚4)2
,

𝑀20 =
𝜈1𝑥2

𝑚3 + 𝑥2
− 𝜇1 −

𝛾
4
𝑥2

𝑥2 +𝑚4
.

 

The existence of equilibrium points and their stability analysis are discussed further below in three 

types: 

• Without therapy. 

• With immunotherapy. 

4.1.1. Without therapy 

The system [5] has a "extinct" equilibrium point E0 (0,0,0,0) for any set of parameters, in which all 

four cell populations are dead. 

𝐽𝐸0 = [

𝛺1 0 0 0
0  𝛺2 0 0
0 0 𝑟 0
0 0 0 −𝜇1

].                     (7) 

The corresponding eigenvalues for this equilibrium point 𝐸0 are 

𝜆1 = 𝛺1 > 0, 𝜆2 = 𝛺2 > 0, 𝜆3 = 𝑟2 > 0, 𝜆4 = −𝜇1 < 0. 
This Eigenvalue clearly shows that the system is unstable and also figures representation are also given 

in Section 5.1. 

4.1.2 With Immunotherapy 

The system [5] has an "extinct" equilibrium point 𝐸1(𝑥1, 0, 𝑥3, 𝑥4) for any set of parameters, 

𝐽𝐸1 =

[
 
 
 
 
 
 
𝑀11 −𝛽 𝑥1̅̅̅ 0 0
0 𝑀12 0 0

0 −
𝛾3̅𝑥3̅̅ ̅

𝑚2
𝑟 − 2𝑟𝑥3̅̅ ̅ −

𝛾3̅
𝑚2

0

0   
𝜈1𝑥4̅̅ ̅

𝑚3
−
𝛾4̅𝑥4̅̅ ̅

𝑚4
0 −𝜇1]

 
 
 
 
 
 

,                  (8) 

where, 
𝑀11 = 𝛺1 − 2𝛺1𝑥1̅̅̅,

𝑀12 = 𝛺2 − 𝛿2𝑥1 −
𝛾1𝑥3̅̅ ̅ + 𝛾2𝑥4̅̅ ̅

𝑚1
.
 

The corresponding eigenvalues for this equilibrium point 𝐸1 are 

𝜆1 = −Ω1 < 0, 𝜆2 = 𝑀12 < 0, 𝜆3 = −𝑟 < 0, 𝜆4 = −𝜇1 < 0. 
This Eigenvalue clearly shows that the system is locally asymptotically stable and also figures 

representation are also given in Section 5.2.   
4.2 Global Stability Analysis 

Global stability analysis investigates the behaviour of system solutions across the entire state space, 

rather than focusing solely on the vicinity of an equilibrium point. The objective is to determine 

whether solutions originating from any initial conditions will converge to a specific equilibrium or, at 

the very least, remain bounded throughout. This broader perspective of global stability provides a more 

thorough insight into the overall dynamics of the system across all possible states. One of the most 

widely used approaches for such an analysis is the application of Lyapunov functions. 

In this section, we rigorously explore the global stability of the tumour-free equilibrium point by 

employing LaSalle’s Invariance Principle [25], combined with a carefully chosen Lyapunov function. 

Our goal is to formally establish the global stability of the tumour-free equilibrium 𝐸(𝑥1, 0, 𝑥3, 𝑥4). To 

this end, we construct and define the Lyapunov function with precision, recognizing it as a crucial tool 
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in our stability analysis. This function will form the mathematical foundation needed to validate the 

robustness of the tumour-free equilibrium point in the absence of tumour cells. 

Through a meticulous investigation of the Lyapunov function, we will demonstrate that the system’s 

trajectories eventually converge toward this tumour-free equilibrium, confirming the global stability 

of the point 𝐸(𝑥1, 0, 𝑥3, 𝑥4), and thereby ensuring the system’s long-term behaviour in the absence of 

malignant growth. 

𝑁 = [𝑥1 − 𝑥1 − 𝑥1ln (
𝑥1

𝑥1
)] + [𝑥3 − 𝑥3 − 𝑥3ln (

𝑥3

𝑥3
)] +

1

2
[𝑥4 − 𝑥4]

2                              (9) 

From the construction of the Lyapunov function, it becomes evident that the function 𝑁 remains non-

negative under the initial conditions within the first quadrant, and it attains the value zero exclusively 

at the tumour-free equilibrium point. This crucial property confirms that 𝑁 is a valid candidate for 

assessing the stability of the equilibrium. To further strengthen this conclusion, we proceed to analyse 

the time derivative of 𝑁, denoted as 
𝑑𝑁

𝑑𝑡
, within the framework of the proposed model, particularly in 

reference to equation (5). 

The behaviour of 
𝑑𝑁

𝑑𝑡
 will provide critical insights into the system’s temporal dynamics, and its role in 

our stability analysis is pivotal. By thoroughly examining 
𝑑𝑁

𝑑𝑡
, we aim to demonstrate that it is non-

positive, which in turn reinforces the global stability of the tumour-free equilibrium point. This non-

positivity will indicate that the system’s trajectories tend to evolve toward this stable state, thereby 

confirming the robustness of the tumour-free equilibrium. 

𝑁′ = (𝑥1 − 𝑥1)
𝑥1′

𝑥1
+ (𝑥3 − 𝑥3)

𝑥3′

𝑥3
+ (𝑥4 − 𝑥4)𝑥4′ 

𝑁′ = (𝑥1 − 𝑥1)(𝛹1(1 − 𝑥1)) + (𝑥3 − 𝑥3)𝑟(1 − 𝑥3) + (𝑥4 − 𝑥4)(𝑠1𝑢1 − 𝜇1𝑥4)          (10) 

After simplify (10), we obtain 

= (𝑥1 − 𝑥1)(−𝛹1(𝑥1 − 𝑥1)) + (𝑥3 − 𝑥3)(−𝑟(𝑥3 − 𝑥3)) − 𝜇1(𝑥4 − 𝑥4)
2 

𝑁′ = −𝛹1(𝑥1 − 𝑥1)
2 − 𝑟(𝑥3 − 𝑥3)

2 − 𝜇1(𝑥4 − 𝑥4)
2 

Under the condition 𝛹1 ≥ 0, 𝑟 ≥ 0, 𝜇1 ≥ 0, the following holds 

𝑁′ ≤ 0. 
We calculated 𝑁′(𝑡) to verify our above results numerically by considering initial values, all 

parameters given in Tables 1 and 2. We can summarize the analytical conditions for global 

asymptotic stability in the following theorem. 

Theorem 1: If 𝛹1 ≥ 0, 𝑟 ≥ 0, 𝜇1 ≥ 0 then the proposed model (5) is globally stable around the 

tumour free equilibrium point 𝐸1. 

 

5. Numerical Simulation 

The system (5) will be discussed in this part, and it will be solved using 4th order Runge-Kutta method. 

The numerical simulation is also completed by means of select out the parameter values represented 

in Tables 1 and 2 with initial conditions 𝑥1(0) =
9

10
, 𝑥2(0) =

1

10
, 𝑥3(0) =

55

100
, 𝑥4(0) =

2

10
. 

We have chosen two categories to analyse numerically for our model: 

• Without treatment 

• With Immunotherapy 

5.1. Without treatment 

First, we now consider without treatment. Figure 1 and 2 show the result of the system without 

treatment. At this stage, the stability analysis showed that Glial cells have decreased in Figure 1 

because of Gliomas gradually maximum size in Figure 2. This has happened at this stage because no 

treatment has been provided. So, next we recruit immunotherapy treatment for killing tumour cells. 
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Figure 1: Numerical solution of the Glial cells without any therapy 

 
Figure 2: Numerical solution of the Glioma cells without any therapy. 

5.2. With Immunotherapy 

At this time, by providing Immunotherapy treatment. We illustrate the findings for the scenario where 

the treatment regimens were used in Figure 3, 4, and 5. This result can be seen in Figure 3, where glial 

cells are shown multiplying rapidly while decreasing tumour cells Figure 4 and Figure 5 shows that 

the concentration of CD8+T cells are also increasing gradually. 

 
Figure 3: Numerical solution of the Glial cells with Immunotherapy. 
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Figure 4: Numerical solution of the Glioma cells with Immunotherapy 

 
Figure 5: Numerical solution of the CD8+ T cells with Immunotherapy. 

 

6. Discussion and Conclusion 

In this paper, we proposed a mathematical model to observe the dynamics of the cancer cells’ interplay 

with Immunotherapy. We take into the 𝑋2(𝑡) Cancer cells, 𝑋1(𝑡) Glial cells, 𝑋3(𝑡) Macrophages, 𝑋4(𝑡) 
CD8+ T cells. The positivity and boundedness are discussed. The steadiness of the linear version has 

been discussed. We construct a characteristics equation and after solve this we could get Eigen values. 

Next, our system is locally asymptotically stable on account of all our Eigen values are less than zero. 

We appear out for a numerical simulation for the system of equations. Numerical Simulations are 

constructed into two different categories. First, we now consider without treatment. Figures 1 and 2 

show the result of the system without treatment. Figure 1 shows decrement of Glial cells because 

increment in Glioma cell counting in Figure 2. Next, we consider the system (5) with Immunotherapy, 

Figures 3 and 5 show that proliferation of Glial and CD8+T cells while decreasing the concentration 

of Cancer cells in Figure 4. 

We believe that the mathematical modelling is interplaying between most cancers’ cells and 

Immunotherapy, constitutes a step in the direction of enhancing techniques for the curing of malignant 

tumours. In future research, we would like to examine the mathematical model (5) with fractional 

derivatives for glial cell interaction between immunotherapy treatment and cancer cells. 
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